

MILESTONES

Background

As flash manufacturers continue to pack more bits onto ever smaller storage cells, the endurance (wear-out) issue for NAND flash storage becomes an ever greater issue. This trade-off between memory cost per GB and endurance means that the endurance problem is never really solved – endurance improvements simply reduce the cost of the flash.

NAND flash chips are used in many devices, including Solid State Disks (SSDs), laptops, tablets, mobile phones, GPS devices, USB drives and flash memory cards.

NVMdurance

NVMdurance provides software that is proven to make flash memory last longer by extending the intrinsic endurance of the NAND flash. This means that to the host device or controller, the flash appears to simply last longer before ever they use additional techniques (like powerful error correction) to further extend its life. This is what is unique to NVMdurance - Non Volatile Memory endurance, NVMdurance.

Milestones

1999 – 2001	Joe Sullivan (then at Analog Devices, Limerick, Ireland) works on extending life of NOR
	flash memory
	Preliminary work describes how varying parameters can achieve great life extension
	(AKA endurance)
2001 -	 Joe teams up with Conor Ryan (then at University of Limerick)
2008	 NOR work formalized and papers published "automating the discovery of parameters by
	testing flash in specially constructed hardware"
	They are approached by NAND flash manufacturers seeking to apply the technology
	 Joe and Conor establish that, due to the much higher complexity of NAND, substantial
	changes and highly sophisticated software is required
2008 – 2011	 Joe and Conor form company, Evolvability Ltd, to do consulting work on extending NAND
	flash endurance
	Several different software approaches taken
	 Scalable NAND test hardware is developed
	 Patenting process begins
2012	Joe and Conor secure funding and support from NDRC (Ireland)
	 New approach developed that uses a combination of hardware testing, software
	simulation and Machine Learning
	Fully autonomic, online controller for SSDs designed
	Tom Burniece and Pearse Coyle provide consulting services to commercialize
	technology
2013	First experiments show a 10-fold gain in endurance
	"Most Innovative Technology" award at Flash Memory Summit, the key annual industry
	event in Santa Clara, California
	 Venture spun out of NDRC early, with \$300,000 VC seed funding from New Venture
	Partners (NJ, USA) and NDRC
	NVMdurance formed; Pearse Coyle joins as CEO, Tom Burniece as Commercial Director
	Paid commercial trials commence
2014	
2014	Further impressive results achieved with NAND flash devices of multiple vendors
	 2nd round of Seed Funding secured - \$700,000, Enterprise Ireland and ACT Venture
	Capital join existing investors
2015	 Altera (now part of Intel) alliance announced - NVMdurance becomes part of FPGA
	offering to SSD controller market
	 David Eggleston, GLOBALFOUNDRIES joins board as non-executive director
	Significant revenue advances secured
2016	 \$2.5M Series A funding round announced
	Team grows to 10 people